Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38646913

RESUMEN

KEY POINTS: Patients with giant adenomas are more likely to have tumor extension into the paranasal sinuses. Compared to macroadenomas, giant adenomas are not associated with worse preoperative SNOT-22 scores.

2.
J Neurosurg Case Lessons ; 5(14)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37014005

RESUMEN

BACKGROUND: Migratory disc herniations can mimic neoplasms clinically and on imaging. Far lateral lumbar disc herniations usually compress the exiting nerve root and can be challenging to distinguish from a nerve sheath tumor due to the proximity of the nerve and characteristics on magnetic resonance imaging (MRI). These lesions can occasionally present in the upper lumbar spine region at the L1-2 and L2-3 levels. OBSERVATIONS: The authors describe 2 extraforaminal lesions in the far lateral space at the L1-2 and L2-3 levels, respectively. On MRI, both lesions tracked along the corresponding exiting nerve roots with avid postcontrast rim enhancement and edema in the adjacent muscle tissue. Thus, they were initially concerning for peripheral nerve sheath tumors. One patient underwent fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) screening and demonstrated moderate FDG uptake on PET-CT scan. In both cases, intraoperative and postoperative pathology revealed fibrocartilage disc fragments. LESSONS: Differential diagnosis for lumbar far lateral lesions that are peripherally enhancing on MRI should include migratory disc herniation, regardless of the level of the disc herniations. Accurate preoperative diagnosis can aid in decision making for management, surgical approach, and resection.

3.
Neurosurg Clin N Am ; 32(2): 225-234, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33781504

RESUMEN

Peptide and dendritic cell vaccines activate the immune system against tumor antigens to combat brain tumors. Vaccines stimulate a systemic immune response by inducing both antitumor T cells as well as humoral immunity through antibody production to cross the blood-brain barrier and combat brain tumors. Recent trials investigating vaccines against peptides (ie, epithelial growth factor receptor variant III, survivin, heat shock proteins, or personalized tumor antigens) and dendritic cells pulsed with known peptides, messenger RNA or unknown tumor lysate targets demonstrate the potential for therapeutic cancer vaccines to become an important therapy for brain tumor treatment.


Asunto(s)
Neoplasias Encefálicas , Vacunas contra el Cáncer , Antígenos de Neoplasias , Encéfalo , Neoplasias Encefálicas/terapia , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas , Humanos
4.
Nature ; 574(7780): 675-678, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31645763

RESUMEN

The neural crest, an embryonic stem-cell population, is a vertebrate innovation that has been proposed to be a key component of the 'new head', which imbued vertebrates with predatory behaviour1,2. Here, to investigate how the evolution of neural crest cells affected the vertebrate body plan, we examined the molecular circuits that control neural crest development along the anteroposterior axis of a jawless vertebrate, the sea lamprey. Gene expression analysis showed that the cranial subpopulation of the neural crest of the lamprey lacks most components of a transcriptional circuit that is specific to the cranial neural crest in amniotes and confers the ability to form craniofacial cartilage onto non-cranial neural crest subpopulations3. Consistent with this, hierarchical clustering analysis revealed that the transcriptional profile of the lamprey cranial neural crest is more similar to the trunk neural crest of amniotes. Notably, analysis of the cranial neural crest in little skate and zebrafish embryos demonstrated that the transcriptional circuit that is specific to the cranial neural crest emerged via the gradual addition of network components to the neural crest of gnathostomes, which subsequently became restricted to the cephalic region. Our results indicate that the ancestral neural crest at the base of the vertebrate lineage possessed a trunk-like identity. We propose that the emergence of the cranial neural crest, by progressive assembly of an axial-specific regulatory circuit, allowed the elaboration of the new head during vertebrate evolution.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo , Cabeza , Cresta Neural , Animales , Regulación del Desarrollo de la Expresión Génica , Cabeza/fisiología , Lampreas/embriología , Cresta Neural/embriología , Cresta Neural/fisiología , Cráneo/embriología , Pez Cebra/embriología , Pez Cebra/genética
5.
Nature ; 544(7648): 88-91, 2017 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-28321127

RESUMEN

The enteric nervous system of jawed vertebrates arises primarily from vagal neural crest cells that migrate to the foregut and subsequently colonize and innervate the entire gastrointestinal tract. Here we examine development of the enteric nervous system in the basal jawless vertebrate the sea lamprey (Petromyzon marinus) to gain insight into its evolutionary origin. Surprisingly, we find no evidence for the existence of a vagally derived enteric neural crest population in the lamprey. Rather, labelling with the lipophilic dye DiI shows that late-migrating cells, originating from the trunk neural tube and associated with nerve fibres, differentiate into neurons within the gut wall and typhlosole. We propose that these trunk-derived neural crest cells may be homologous to Schwann cell precursors, recently shown in mammalian embryos to populate post-embryonic parasympathetic ganglia, including enteric ganglia. Our results suggest that neural-crest-derived Schwann cell precursors made an important contribution to the ancient enteric nervous system of early jawless vertebrates, a role that was largely subsumed by vagal neural crest cells in early gnathostomes.


Asunto(s)
Evolución Biológica , Sistema Nervioso Entérico/citología , Sistema Nervioso Entérico/embriología , Cresta Neural/citología , Neuronas/citología , Petromyzon/embriología , Torso/embriología , Animales , Diferenciación Celular , Linaje de la Célula , Movimiento Celular , Ganglios/citología , Ganglios/embriología , Fibras Nerviosas , Cresta Neural/embriología , Tubo Neural/citología , Tubo Neural/embriología , Células de Schwann/citología , Nervio Vago/citología , Nervio Vago/embriología
6.
Dev Biol ; 397(2): 282-92, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25286121

RESUMEN

Members of the Sox family of transcription factors play a variety of critical developmental roles in both vertebrates and invertebrates. Whereas SoxBs and SoxEs are involved in neural and neural crest development, respectively, far less is known about members of the SoxC subfamily. To address this from an evolutionary perspective, we compare expression and function of SoxC genes in neural crest cells and their derivatives in lamprey (Petromyzon marinus), a basal vertebrate, to frog (Xenopus laevis). Analysis of transcript distribution reveals conservation of lamprey and X. laevis SoxC expression in premigratory neural crest, branchial arches, and cranial ganglia. Moreover, morpholino-mediated loss-of-function of selected SoxC family members demonstrates essential roles in aspects of neural crest development in both organisms. The results suggest important and conserved functions of SoxC genes during vertebrate evolution and a particularly critical, previously unrecognized role in early neural crest specification.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Cresta Neural/embriología , Placa Neural/embriología , Petromyzon/embriología , Factores de Transcripción SOXC/metabolismo , Xenopus laevis/embriología , Animales , Clonación Molecular , Cartilla de ADN/genética , ADN Complementario/genética , Técnicas de Silenciamiento del Gen , Hibridación in Situ , Cresta Neural/metabolismo , Placa Neural/metabolismo , Oligonucleótidos/genética , Filogenia , beta-Galactosidasa
9.
Int J Dev Biol ; 56(5): 377-83, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22811271

RESUMEN

Members of the Sox (Sry-related high mobility group box) family of transcription factors play a variety of roles during development of both vertebrates and invertebrates. A marked expansion in gene number occurred during the emergence of vertebrates, apparently via gene duplication events that are thought to have facilitated new functions. By screening a macroarrayed library as well as the lamprey genome, we have isolated genes of the Sox B, D, E and F subfamilies in the basal jawless vertebrate, lamprey. The expression patterns of all identified Sox genes were examined from gastrulation through early organogenesis (embryonic day 4-14), with particular emphasis on the neural crest, a vertebrate innovation. Coupled with phylogenetic analysis of these Sox genes, the results provide insight into gene duplication and di-vergence in paralog deployment occurring during early vertebrate evolution.


Asunto(s)
Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Lampreas/genética , ARN Mensajero/genética , Factores de Transcripción SOX/genética , Factores de Transcripción SOX/metabolismo , Animales , Embrión no Mamífero/citología , Evolución Molecular , Hibridación in Situ , Lampreas/embriología , Cresta Neural/citología , Cresta Neural/metabolismo , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...